56 research outputs found

    Full-field vibrometry by high-speed digital holography for middle-ear mechanics

    Get PDF
    Hearing loss affects approximately 1 in 10 people in the world and this percentage is increasing every year. Some of the most common causes of hearing loss are disorders of the middle-ear. Early detection and diagnosis of hearing loss as well as research to understand the hearing processes depend on medical and research tools for quantification of hearing capabilities and the function of the middle-ear in the complex acousto-mechanical transformation of environmental sounds into vibrations of the middle-ear, particular of the human tympanic membrane (TM or eardrum). Current ear exams assess the state of a patient’s hearing capabilities mainly based on qualitative evaluation of the healthiness of the TM. Existing quantitative clinical methods for description of the motion of the TM are limited to either average acoustic estimates (admittance or reflectance) or single-point displacement measurements. Such methods could leave examiners and researchers blind to the complex spatio-temporal response of the nanometer scale displacements of the entire TM. Current state-of-the-art medical research tools provide full-field nanometer displacement measurements of the surface of the human TM excited by steady state (tonal) stimuli. However, to fully understand the mechanics of hearing, and the complex acousto-mechanical characteristics of TM in particular, new tools are needed for full-field high-speed characterization of the nanometer scale displacements of the human TM subjected to impulse (wideband) acoustic excitation. This Dissertation reports the development of a new high-speed holographic system (HHS) for full-field nanometer transient (i.e., \u3e 10 kHz) displacement measurement of the human middle-ear and the tympanic membrane, in particular. The HHS allows spatial (i.e., \u3e500k data points) and temporal (i.e., \u3e 40 kHz) resolutions that enable the study of the acoustical and mechanical characteristics of the middle-ear at a level of detail that have never been reached before. The realization of the HHS includes the development and implementation of novel phase sampling and acquisition approaches that allow the use of state-of-the-art high-resolution (i.e., \u3e5 MP) and high-speed (\u3e 80,000 fps) cameras through modular and expandable control architectures. The development of novel acquisition approaches allows the use of conventional speed (i.e., \u3c20 fps) cameras to realize high-temporal resolutions (i.e., \u3c15 us) at equivalent sampling rates of \u3e 50,000 fps with minimum hardware cost and modifications. The design and implementation of novel spatio-temporal phase sampling methods utilize the high temporal resolution (i.e., \u3c 5 us exposure) and frame rate (i.e., \u3e80,000 fps) of high-speed cameras without imposing constraints on their spatial resolution (i.e., \u3e20 um pixel size). Additionally, the research and in-vivo applications capabilities of the HHS are extended through the development and implementation of a holographic otoscope head (OH) and a mechatronic otoscope positioner (MOP). The large (i.e., \u3e 1 GB with \u3e 8x10^9 parameters) spatio-temporal data sets of the HHS measurements are automatically processed by custom parallel data mining and interpretation (PDMI) methods, which allow automatic quantification of medically relevant motion parameters (MRMPs), such as modal frequencies, time constants, and acoustic delays. Such capabilities could allow inferring local material properties across the surface of the TM. The HHS is a new medical tool that enables otologists to improve the quality of diagnosis and treatments as well as provides researchers with spatio-temporal information of the hearing process at a level of detail never reached before

    Intracochlear pressure in cadaver heads under bone conduction and intracranial fluid stimulation

    Full text link
    Background The frequency dependent contributions of the various bone conduction pathways are poorly understood, especially the fluid pathway. The aim of this work is to measure and investigate sound pressure propagation from the intracranial space to the cochlear fluid. Methods Stimulation was provided sequentially to the bone (BC) or directly to the intracranial contents (hydrodynamic conduction, or HC) in four cadaver heads, where each ear was tested individually, for a total of 8 samples. Intracranial pressure was generated and monitored via commercial hydrophones, while the intracochlear sound pressure (ICSP) levels were monitored via custom-made intracochlear acoustic receivers (ICAR). In parallel, measurements of the 3D motion of the cochlear promontory and stapes were made via 3D Laser Doppler Vibrometer (3D LDV). Results Reliability of the intracochlear sound pressure measurements depends on the immobilization of the ICAR relative to the otic capsule. Regardless of the significant differences in absolute stapes and promontory motion, the ratios between the otic capsule velocity, the stapes volume velocity (relative to the cochlea), and the intracochlear pressure were very similar under BC and HC stimulus. Under HC, the cochlear fluid appears be activated by an osseous pathway, rather than a direct non-osseous pathway from the cerebrospinal fluid (CSF), however, the osseous pathway itself is activated by the CSF pressure. Conclusions Data suggests that the skull bone surrounding the brain and CSF could play a role in the interaction between the two CSF and the cochlea, under both stimulation conditions, at high frequencies, while inertia is dominant factor at low frequencies. Further work should be focused on the investigation of the solid-fluid interaction between the skull bone walls and the intracranial content

    Implementation of Renewable Energy Sources in the State of California

    Get PDF
    This work proposes and analyzes methods to substitute traditional energy sources with new energy technologies that are less harmful to the environment. The state of California serves as the place to apply our ideas. Through a detailed analysis of alternative technologies developed and currently under research, we promote those with highest applicability to the state. Wind, solar and geothermal energy sources are most feasible for California but other technologies such as ocean and biomass have also been considered

    Multiphoton imaging for morphometry of the sandwich-beam structure of the human stapedial annular ligament

    Full text link
    Background The annular ligament of the human stapes constitutes a compliant connection between the stapes footplate and the peripheral cochlear wall at the oval window. The cross section of the human annular ligament is characterized by a three-layered structure, which resembles a sandwich-shaped composite structure. As accurate and precise descriptions of the middle-ear behavior are constrained by lack of information on the complex geometry of the annular ligament, this study aims to obtain comprehensive geometrical data of the annular ligament via multiphoton imaging. Methods The region of interest containing the stapes and annular ligament was harvested from a fresh-frozen human temporal bone of a 46-years old female. Multiphoton imaging of the unstained sample was performed by detecting the second-harmonic generation of collagen and the autofluorescence of elastin, which are constituents of the annular ligament. The multiphoton scans were conducted on the middle-ear side and cochlear side of the annular ligament to obtain accurate images of the face layers on both sides. The face layers of the annular ligament were manually segmented on both multiphoton scans, and then registered to high-resolution μCT images. Results Multiphoton scans of the annular ligament revealed 1) relatively large thickness of the core layer compared to the face layers, 2) asymmetric geometry of the face layers between the middle-ear side and cochlear side, and variation of their thickness and width along the footplate boundary, 3) divergent relative alignment of the two face layers, and 4) different fiber composition of the face layers along the boundary with a collagen-reinforcement near the anterior pole on the middle-ear side. Conclusion and outlook Multiphoton microscopy is a feasible approach to obtain the detailed three-dimensional features of the human stapedial annular ligament along its full boundary. The detailed description of the sandwich-shaped structures of the annular ligament is expected to contribute to modeling of the human middle ear for precise simulation of middle-ear behavior. Further, established methodology in this study may be applicable to imaging of other middle-ear structures. Keywords Annular ligament Stapes Multiphoton microscopy Two-photon microscopy Face layer Core laye

    Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence

    Get PDF
    Objective Investigation of bone conduction sound propagation by osseous and non-osseous pathways and their interactions based upon the stimulation site and coupling method of the actuator from a bone conduction hearing aid (BCHA). Methods Experiments were conducted on five Thiel embalmed whole head cadaver specimens. The electromagnetic actuator from a commercial bone conduction hearing aid (BCHA) (Baha® Cordelle II) was used to provide a stepped sine stimulus in the range of 0.1–10 kHz. Osseous pathways (direct bone stimulation or transcutaneous stimulation) were sequentially activated by stimulation at the mastoid or the BAHA side using several methods including a percutaneously implanted screw, Baha® Attract transcutaneous magnet and a 5-N (5-N) steel headband. Non-osseous pathways (only soft tissue or intra-cranial contents) were activated by actuator stimulation on the eye or neck via attachment to a 5-N steel headband, and were compared with stimulation via equivalent attachment on the mastoid and forehead. The response of the skull was measured as motions of the ipsi- and contralateral promontory and intracranial pressure (ICP) in the central, anterior, posterior, ipsilateral and contralateral temporal regions of the cranial space. Promontory motion was monitored using a 3-dimensional Laser Doppler vibrometer (3D LDV) system. Results The promontory undergoes spatially complex motion with similar contributions from all motion components, regardless of stimulation mode. Combined 3D promontory motion provided lower inter-sample variability than did any individual component. Transcranial transmission showed gain for the low frequencies and attenuation above 1 kHz, independent of stimulation mode This effect was not only for the magnitude but also its spatial composition such that contralateral promontory motion did not follow the direction of ipsilateral stimulation above 0.5 kHz. Non-osseous stimulation on the neck and eye induced comparable ICP relative to percutaneous (via screw) mastoid stimulation. Corresponding phase data indicated lower phase delays for ICP when stimulation was via non-osseous means (i.e., to the eye) versus osseous means (i.e., to the mastoid or forehead). Sound propagation due to skull stimulation passes through the thicker bony sections first before activating the CSF. Conclusion Utilization of 3D promontory motion measurements provides more precise (lower inter-sample variability) information about bone vibrations than does any individual component. It also provides a more detailed description of transcranial attenuation. A comprehensive combination of motion and pressures measurements across the head, combined with a variation of the stimulation condition, could reveal details about sound transmission within the skull

    Performance evaluation of a novel piezoelectric subcutaneous bone conduction device

    Full text link
    Objectives Evaluation of the transfer function efficiency of a newly-developed piezo-electric actuator for active subcutaneous bone conduction hearing aid. Methods The experiments were conducted on four Thiel embalmed whole head cadaver specimens. A novel actuator based on piezo-electric transduction (PZTA), part of a subcutaneous bone conduction hearing aid device, was sequentially implanted on three locations: 1) Immediately posterior to pinna; 2) 50–60 mm posterior to pinna, approximately the same distance as between the BAHA (bone anchored hearing aid) location and the ear canal, but the same horizontal level as location 1; 3) the traditional BAHA location. Using a single point 3-dimensional laser Doppler vibrometer (LDV) system, three types of motion measurements were performed at the cochlear promontory for each stimulation location: 1) ipsilateral side, 2) contralateral side, 3) measurements 1 and 2 were repeated after mastoidectomy on the ipsilateral side. Results On average, stimulation at locations 1 and 2 show a trend for higher promontory motion relative to location 3 (BAHA location) above 1 kHz. Stimulation at location 1 had an average improvement of 1–6 dB at 2–4 kHz, and 1–18 dB at 6–8 kHz. The spatial composition of the motion showed significant contributions from both in-plane and out-of-plane (along ear canal) motion components, with in-plane components being dominant at mid and high frequencies for locations 2 and 3. Stimulation at locations 1 and 3 produced similar transcranial attenuation at mid frequencies (0.6–4 kHz), with a potential trend of higher attenuation (seen in 3 or the 4 samples) for location 1 at higher frequencies (>4 kHz). The mastoidectomy affected negatively mostly the high frequencies (6–8 kHz) for stimulation at location 1, with no significant change for location 3. Conclusion The sound transfer function efficacy of a novel subcutaneous bone conduction device has been quantified, and the influence of stimulation location and mastoidectomy have been analyzed based on promontory motion in Thiel-preserved cadaver heads

    Three-dimensional Quasi-Static Displacement of Human Middle-ear Ossicles under Static Pressure Loads: Measurement Using a Stereo Camera System

    Full text link
    The time delay and/or malfunctioning of the Eustachian tube may cause pressure differences across the tympanic membrane, resulting in quasi-static movements of the middle-ear ossicles. While quasi-static displacements of the human middle-ear ossicles have been measured one- or two-dimensionally in previous studies, this study presents an approach to trace three-dimensional movements of the human middle-ear ossicles under static pressure loads in the ear canal (EC). The three-dimensional quasi-static movements of the middle-ear ossicles were measured using a custom-made stereo camera system. Two cameras were assembled with a relative angle of 7 degrees and then mounted onto a robot arm. Red fluorescent beads of a 106-125 µm diameter were placed on the middle-ear ossicles, and quasi-static position changes of the fluorescent beads under static pressure loads were traced by the stereo camera system. All the position changes of the ossicles were registered to the anatomical intrinsic frame based on the stapes footplate, which was obtained from µ-CT imaging. Under negative ear-canal pressures, a rotational movement around the anterior-posterior axis was dominant for the malleus-incus complex, with small relative movements between the two ossicles. The stapes showed translation toward the lateral direction and rotation around the long axis of the stapes footplate. Under positive EC pressures, relative motion between the malleus and the incus at the IMJ became larger, reducing movements of the incus and stapes considerably and thus performing a protection function for the inner-ear structures. Three-dimensional tracing of the middle-ear ossicular chain provides a better understanding of the protection function of the human middle ear under static pressured loads as immediate responses without time delay. Keywords ambient pressure variation micro-computed tomography imaging middle-ear ossicles protection function quasi-static displacement static pressure static pressure loads stereo camera system three-dimensional displacemen

    Experimentelle Evaluation des Adhear, eines neuen transkutanen Knochenleitungshörgeräts

    Full text link
    Objective: Different bone conduction hearing aids (BCHA) are commercially available. They are attached to the head in different ways. The aim of this work is an experimental evaluation of the performance of a new transcutaneous (surface mounted via adhesive pad) actuator of a BCHA. Material and methods: Experiments were conducted on a Thiel embalmed whole head cadaver specimen. The electromagnetic actuators from a commercial BCHA (Adhear) was used to provide stepped sine stimulus in the range of 0.1-10 kHz. The BCHA was coupled to a skin surface adhesion that was placed on the mastoid. The response was monitored as motions of the ipsi- and contralateral promontory, and as motions of the ipsi-, top and contra-lateral skull surface. Promontory motion was quantified via a three-dimensional laser Doppler vibrometer (3D LDV) system. Analogously, surface motion was registered by sequentially measuring ~200 points on the skull surface (~ 15-20 mm pitch) via 3D LDV. The data were compared to corresponding measurements obtained with a Baha Power that was coupled to skin on the Mastoid via a 5 Newton steelband. Results: Ipsilateral and contralateral promontory vibration for stimulation with the Adhear are comparable to stimulation with the Baha Power on the 5 Newton steelband with regard to frequency dependent amplitude and phase, as well as the contribution of the motion components. The surface motion of the skull experiences a similar complex motion for both stimulation modes. Conclusions: Although the Adhear is coupled without any pressure to the skin over the mastoid whereas the Baha power is attached with a 5 Newton steelband, the vibration parameters investigated are comparable
    • …
    corecore